SOBOLEV INEQUALITIES FOR DIFFERENTIAL FORMS AND L q , p - COHOMOLOGY
نویسنده
چکیده
We study the relation between Sobolev inequalities for differential forms on a Riemannian manifold (M, g) and the Lq,p-cohomology of that manifold. The Lq,p-cohomology of (M,g) is defined to be the quotient of the space of closed differential forms in L(M) modulo the exact forms which are exterior differentials of forms in L(M).
منابع مشابه
SOBOLEV INEQUALITIES FOR DIFFERENTIAL FORMS AND Lq,p-COHOMOLOGY. VLADIMIR GOLD’SHTEIN AND MARC TROYANOV
We study the relation between Sobolev inequalities for differential forms on a Riemannian manifold (M, g) and the Lq,p-cohomology of that manifold. The Lq,p-cohomology of (M,g) is defined to be the quotient of the space of closed differential forms in L(M) modulo the exact forms which are exterior differentials of forms in L(M).
متن کاملGlobal Caccioppoli-Type and Poincaré Inequalities with Orlicz Norms
The L-theory of solutions of the homogeneous A-harmonic equation d A x, dω 0 for differential forms has been very well developed in recent years. Many L-norm estimates and inequalities, including the Hardy-Littlewood inequalities, Poincaré inequalities, Caccioppoli-type estimates, and Sobolev imbedding inequalities, for solutions of the homogeneous A-harmonic equation have been established; see...
متن کاملOn Reverse Hypercontractivity
We study the notion of reverse hypercontractivity. We show that reverse hypercontractive inequalities are implied by standard hypercontractive inequalities as well as by the modified log-Sobolev inequality. Our proof is based on a new comparison lemma for Dirichlet forms and an extension of the Strook-Varapolos inequality. A consequence of our analysis is that all simple operators L = Id−E as w...
متن کاملStochastic Cohomology of the Frame Bundle of the Loop Space
We study the differential forms over the frame bundle of the based loop space. They are stochastics in the sense that we put over this frame bundle a probability measure. In order to understand the curvatures phenomena which appear when we look at the Lie bracket of two horizontal vector fields, we impose some regularity assumptions over the kernels of the differential forms. This allows us to ...
متن کاملHodge Theory in the Sobolev Topology for the De Rham Complex
The authors study the Hodge theory of the exterior differential operator d acting on q-forms on a smoothly bounded domain in R, and on the half space R + . The novelty is that the topology used is not an L 2 topology but a Sobolev topology. This strikingly alters the problem as compared to the classical setup. It gives rise to a boundary value problem belonging to a class of problems first intr...
متن کامل